J K SHAH CLASSES

CLASS ROOM TEST

	SYJC March' 19				
Marks : 40	Subject : MATHS – II	D			
	Ratio, Proportion & Partnership /				
	Commission, Brokerage & Discount				

Duration : 1.5 Hours Solution

(04)

Q.1. Attempt any Two : (2 marks each)

- 1. We assume that Alex spent ₹ x during June 2010 on food items.
 - ∴ We have 20 : x = 12 : 900

 $\therefore \frac{20}{x} = \frac{12}{900}$ $\therefore \frac{x}{20} = \frac{900}{12}$ $\therefore x = \frac{900}{12} \times 20$ $\therefore x = 1,500$

Thus, Alex's expenditure on food items during June 2010 must be ₹ 1,500.

2. Let total strength of the class be x students, Now, 70% are boys.

 \therefore Boys are $\frac{70x}{100} = \frac{7x}{10}$ and 30% are girls. \therefore Girls are $\frac{30x}{100} = \frac{3x}{10}$ Now 16 boys and 8 girls are added. \therefore Boys are $\frac{7x}{10}$ + 16 and girls are $\frac{3x}{10}$ + 8 Their ratio is 11 : 5. Thus, we get $\frac{\frac{7x}{10} + 16}{\frac{3x}{10} + 8} = \frac{11}{5}$ $\therefore 5\left[\frac{7x}{10}+16\right] = 11\left[\frac{3x}{10}+8\right]$ $\therefore \frac{35x}{10} + 80 = \frac{33x}{10} + 88$ $\therefore \frac{35x}{10} - \frac{33x}{10} = 88 - 80$ ∴ × = 8 \therefore x = 8 x $\frac{10}{2}$ ∴ x = 40 \therefore Number of boys = $\frac{7}{10}$ x 40 = 28 \therefore Number of boys = $\frac{3}{10} \times 40 = 12$... Originally, there were 28 boys and 12 girls.

J K SHAH CLASSES

(12)

3. Let the income of Oliver be ₹ x. Number, the expenditure on conveyance = x x $\frac{15}{100}$ But it is ₹ 1,800 $\therefore 1,800 = \frac{15x}{100}$ $\therefore x = \frac{1800 \times 100}{15}$ ∴ x = ₹ 12,000 Expenditure on food is 30% of total income ₹ 12,000. \therefore expenditure on food = 12,000 x $\frac{30}{100}$ =₹3,600 Hence, Oliver spends ₹ 3600 in food. Alternative Method: Ration of expenditure on food and conveyance is 30% : $15\% \Rightarrow 30$: $15 \Rightarrow 2$: 1. Let ₹ x be spent on food. ... ratio of amount spent on food and conveyance is x : 1,800 $\therefore 2:1 = x:1,800$ $\therefore \frac{2}{1} = \frac{x}{1800}$ ∴ x = 2 x 1,800 ∴ x = ₹ 3,600.

Since capital invested are same for all the 3 partners, hence profits will be distributed in 4. proportion of the time period for which capitals are invested. Since periods are 12 months, 9 months and 5 months respectively.

 \therefore Profit will be divided in the ratio 12: 9 : 5. Also 12 + 9 + 5 = 26Share of Ameena in the profit $\frac{12}{26}$ = x 23,400 = ₹ 10,800.

Share of Yasmin in the profit

<u>9</u> 26 = x 23,400 = ₹ 8,100.

Share of Shabana in the profit

⁵/₂₆ = x 23,400 = ₹ 4500.

∴ Ameena' s profit, Yasmin's profit and Shabana's profit are ₹ 10,800, ₹ 8,100 and ₹ 4,500 respectively.

Q.2. Attempt any Four : (3 marks each)

Gopal invested ₹ 30,000 for 12 months. 1.

Adam invested ₹ 40,000 for 6 months.

Salim invested ₹ 50,000 for 3 months.

Since capitals and periods both are different. Profit is distributed in the ratio of the product of the capital and respective period.

 $\therefore \text{ Profit is distributed in the proportion of } 30,000 \times 12 : 40,000 \times 6 : 50,000 \times 3 \\ \text{i.e. in the proportion of } 3 \times 12 : 4 \times 6 : 5 \times 3 \\ \text{i.e. in the proportion of } 12 : 8 : 5 \\ \text{Also, } 12 + 8 + 5 = 25 \\ \therefore \text{ Gopal's share in the profit} \\ = \frac{12}{25} \times 17,500 = ₹ 8,400 \\ \therefore \text{ Adam's share in the profit} \\ \frac{8}{25} \times 17,500 = ₹ 5,600 \\ \therefore \text{ Salim's share in the profit} \\ = \frac{5}{25} \times 17,500 = ₹ 3,500. \\ \end{cases}$

2. Let period of A's capital be x months. Since ratio of their capital is 5 :6. \therefore Let A's capital be 5y and B's capital be 6y \therefore A invested 5y for x months. B invested 6y for 20 months. Profit is distributed in the ratio 5y X x : 6y X 20But given ratio of the profit is 5 : 4 $\therefore \frac{5y Xx}{6y x 20} = \frac{5}{4}$ $\therefore \frac{5x}{6x20} = \frac{5}{4}$

$$\therefore 5^{x} = \frac{5x6 \times 20}{4}$$
$$\therefore x = \frac{5x6 \times 20}{4 \times 5}$$

- ∴ x = 30
- \therefore A invested the capital for 30 months.

Amit invested ₹ 20,000. After 3 months he withdrew ₹ 5,000.
∴ he invested (20,000 - 5,000) = 15,000 for rest 9 months. Rohit invested ₹ 20,000. After 3 months he added ₹ 5,000.
∴ he invested (20,000 + 5,000) = 25,000 for rest 9 months. Since, the period of investments of both is 9 months, the profit of ₹ 12,800 is dividend between them in the proportion to their investments, i.e., in the proportion to (20,000 x 3) + (15,000 x 9): (20,000 x 3) + (25,000 x 9) ⇒ (60,000 + 1,35,000) : (60,000 + 2,25,000) ⇒ 1,95,000 : 2,85,000 ⇒ 39 : 57 Now, total share = 39 + 57 = 96

J K SHAH CLASSES

∴ Amit's share in the profit = $\frac{39}{96}$ x 12,800 = ₹ 5,200

∴ Rohit's share in the profit = $\frac{57}{96}$ x 12,800 = ₹ 7,600

Hence, the shares in profit of Amit and Rohit are ₹ 5,200 and ₹ 7,600 respectively. Alternative Method: According to given data we prepare the following table:

Partner	Capital Invested	Period of Investment	Equivalent Capital
Amit	20,000	3	60,000 + 1,35,000
	15,000	9	= 1,95,000
Rohit	20,000	3	60,000 + 2,25,000
	25,000	9	= 2,85,000
Total	-	-	4,80,000

∴ Amit's share in profit

 $= \frac{195000}{480000} \times 12,800 = \frac{39}{96} \times 12,800 = ₹ 5,200$ Rohit's share in profit

- = $\frac{285000}{480000}$ x 12,800 = $\frac{57}{96}$ x 12,800 = ₹ 7,600.
- **4.** The ratio of capitals invested by Mr. Natarajan and Mr. Gopalan is 4 : 5. Mr. Gopalan invested capital for 16 months.

Let the period of investment by Mr. Natarajan be x months.

Let Mr. Natarajan's capital be ₹ 4 and Mr. Gopalan's capital be ₹ 5.

Thus, Mr. Natarajan invested ₹ 4 for x months

and Mr. Gopalan invested ₹ 5 for 16 months.

 \therefore profit is distributed in the ratio 4x : 80

But the given ratio of profit is 5 : 4

 $\therefore \frac{4x}{80} = \frac{5}{4}$

$$\therefore 4x = \frac{5x80}{4}$$

∴ 4x = 100

∴ x = 25

Hence, Mr. Natarajan invested the capital for 25 months.

5. The capitals of three partners A, B and C are in the ratio 4 : 3 : 3. Net amount realised of the assets of the company

= (Sale value of asset) - (Payment of liabilities) - (Realisation expenses)

= 400000 - 60000 - 4000 = ₹ 336000

This amount is distributed in the proportion to their capitals i.e., 4:3:3. Also total share = 4 + 3 + 3 = 10

A's share in the final settlement = $\frac{4}{10} \times 336000$ = ₹ 134400 B's share in the final settlement = $\frac{3}{10} \times 336000$ = ₹ 100800 C's share in the final settlement = $\frac{3}{10} \times 336000$ = ₹ 100800

Hence, as final settlement after dissolution each partner A, B, C gets ₹ 134400, ₹ 100800 and ₹ 100800 respectively.

Attempt any One : (4 marks each) : Q.3.

(04)

Mr. Ahuja invested ₹ 75,000 for 5 months and ₹ 80,000 for 7 months. 1. Mr. Sinha invested ₹ 50,000 for 5 months and ₹ 40,000 for 7 months. ... Profit is distributed in the ratio $(75,000 \times 5 + 80,000 \times 7)$: $(50,000 \times 5 + 40,000 \times 7)$ i.e. in the ratio (75 x 5+ 80 x 7) : (50 x 5+ 40 x 7) i.e. in the ratio $(75 + 16 \times 7)$: $(50 + 8 \times 7)$ i.e. in the ratio (75 + 112) : (50 + 56) i.e. in the ratio 187: 106 Also, 187 + 106 = 293 $=\frac{187}{293}$ X 11720 ∴ Ahuja's share in the profit ₹7.480 = $=\frac{106}{293}$ X 11720 ∴ Sinha's share in the profit =₹4,240. Ahuja's share in profit is ₹ 7,480 and that of Mr. Sinha's is ₹ 4,240. 2. Since capitals invested by P and Q are in the ratio 4: 3. ∴ Let P's capital initially be ₹ 4x for 9 months and Q's capital initially be ₹ 3x for 9 months. Now 25% of 4x = $\frac{4x \times 25}{100}$ = ₹ x P withdrew ₹ x from his earlier capital (i.e. 4x) for next 3 months. Q added ₹ x in his earlier capital (i.e. 3x) for next 3 months. ∴ for next 3 months P's capital is $\mathbf{E}(4\mathbf{x} - \mathbf{x}) = 3\mathbf{x}$ and Q's capital is ₹ (3x + x) = ₹ 4x... Profit is distributed in the ratio $(4x \times 9 + 3x \times x 3) : (3x \times x + 4x \times 3)$ i.e. in the ratio (36x + 9x): (27x + 12x)i.e. in the ratio 45x: 39x i.e. in the ratio 15 : 13 (dividing by 3x) Also 15 + 13 = 28. Now given that P's profit is ₹ 15,450. ∴ P's share in the profit 1 5

$$=\frac{15}{28} \times \text{(Total Profit)}$$

∴ 15,450 = $\frac{15}{28} \times \text{(Total Profit)}$
∴ Total profit = ₹ 28,840
Now Q's share in profit = $\frac{13}{28} \times 28,840$

3.

 $=\frac{13}{28} \times 28,840$ = ₹ 13,390 ∴ Total profit is = ₹ 28,840 Q's share in the profit ₹ 13,390. Amar spend 90% of his salary. \therefore Amar saves 10% of his salary. Similarly, Akbar and Anthony spend 80% and 70% of their salaries. : Akbar saves 20% of his salary and Anthony saves 30% of his salary. But, their savings are in the ratio 3:4:7. ... 10% of Amar's salary : 20% of Akbar's salary : 30% of Anthony's salary = 3:4:7:. 10% of Amar's salary : 20% of Akbar's salary = 3 : 4 10 $\therefore \ \frac{\overline{100}}{20} = \frac{3}{4}$ $\therefore \frac{\text{Amar's salary}}{2 \text{ Akbar's salary}} = \frac{3}{4}$ $\therefore \frac{\text{Amar's salary}}{\text{Akbar's salary}} = \frac{6}{4} = \frac{18}{12} \qquad \dots \dots (1)$ Similarly, $\frac{20\% \text{ of Amar's salary}}{30\% \text{ of Anthony's salary}} = \frac{4}{7}$ $\therefore \frac{2(\text{Akbar's salary})}{3(\text{Anthony's salary})} = \frac{4}{7}$ $\therefore \frac{\text{Akbar's salary}}{\text{Anthony's salary}} = \frac{4 \times 3}{7 \times 2} = \frac{6}{7} = \frac{12}{14}$ From (1) and (2), we get Amar's salary : Akbar's salary : Anthony's salary = 18 : 12 : 14 = 9:6:7But, their total monthly salaries together is 66,000 ∴ Amar's salary = $\frac{9}{22}$ x 66,000 = 27,000 ₹ Akbar's salary = $\frac{6}{22}$ x 66,000 = 18,000 ₹ Anthony's salary = $\frac{7}{22}$ x 66,000 = 21,000 ₹ Hence, salaries of Amar, Akbar and Anthony are ₹27,000, ₹18,000 and ₹21,000 respectively.

Q.4. Solve any Two : (2 Marks each) (04) 1. Here, P = 5000, n = 4 months = $\frac{1}{3}$ year, r = 12.5%

Now, sum due = P $\left(1 + \frac{nr}{100}\right)$ = 5000 x $\left(1 + \frac{\frac{1}{3} \times 12.5}{100}\right)$ = 5000 x $\left(1 + \frac{125}{3000}\right)$ = 5000 x $\left(1 + \frac{1}{24}\right)$ = 5000 x $\frac{25}{24} = \frac{125000}{24}$ = 5208.33 = 5208.30 Hence, the sum due is ₹ 5,208.30.

2. Agent's commission at 7% on ₹ 20800

= 20800 x
$$\frac{7}{100}$$
 = ₹ 1456

Rate of del credere = 1.5% Amount of del credere at 1.5% on ₹ 20800

$$= 20800 \times \frac{15}{10} \times \frac{1}{100} = \frac{3120}{10}$$

- = ₹312
- ... agent's total commission
- = ₹ (1456 + 312)
- = ₹1768

Earning of the merchant

- = ₹ (20800 1768)
- = ₹19,032.

3. Salesman's income :

Total sales = ₹ 35,000 4% commission on the sales up to ₹ 10,000 ∴ commission on the sales of ₹ 10,000

= 10,000 x
$$\frac{4}{100}$$
 =₹400

5% commission on the remaining sales of ₹ (35,000 – 10,000 =) 25,000 \therefore commission on the sales of ₹ 25,000

= 25,000 x
$$\frac{5}{100}$$
 = ₹ 1,250
∴ salesman's total income
= ₹ (400 + 1,250)

4. Given : True discount = ₹ 600, r = 16%

n = 9 months =
$$\frac{9}{12} = \frac{3}{4}$$
 year
Now, True discount = $\frac{PW \times n \times r}{100}$

(12)

$$\therefore 600 = \frac{PW \times \frac{3}{4} \times 16}{100}$$

$$\therefore 600 \times 100 = PW \times 12$$

$$\therefore PW = \frac{600 \times 100}{12}$$

$$\therefore PW = ₹ 5,000$$

Hence, present worth of the bill is ₹ 5,000.
Sum due = PW + TD
= 5,000 + 600
= ₹ 5,600

Hence, the sum due of the bill is ₹ 5,600.

Q.5. Solve any Four : (3 Marks each)

∴ Sudha's commission = ₹ 4,500 – 1,500 = ₹ 3,000

$$\therefore 3,000 = x \times \frac{8}{100}$$
$$\therefore x = \frac{3,000 \times 100}{8}$$
$$\therefore x = ₹ 37,500$$

Hence, the sales made by Sudha in that month = $\overline{\ast}$ (10,000 + 37,500 =) 47,500.

2. Let the cost of one book is = $\overline{\mathbf{x}}$ x

∴ the cost of 20 books = ₹ 20x

Now, cost of 20 books is same as the cost of 21 books.

∴ Interest on ₹ 20x for 6 months at the rate r% will be same as the cost of one book.

$$\therefore x = 20x \times \frac{1}{2}x \frac{r}{100}$$
$$\therefore 1 = \frac{10r}{100}$$
$$\therefore 100 = 10r$$
$$\therefore r = \frac{100}{10} = 10$$

Hence, the rate of interest is 10% per annum.

3. Present worth = ₹ 5,500, Sum due = ₹ 5,830, Period n = 9 months = $\frac{9}{12} = \frac{3}{4}$ year Now, Sum due = Present worth $\left(1 + \frac{n \times r}{100}\right)$ $\therefore 5,830 = 5500 \left(1 + \frac{3r}{4 \times 100}\right)$ $\therefore \frac{5,830}{5,500} = 1 + \frac{3r}{400}$ $\therefore \frac{5,830}{5,500} - 1 = \frac{3r}{400}$ $\therefore \frac{5,830 - 5,500}{5,500} = \frac{3r}{400}$ $\therefore \frac{330}{5,500} = \frac{3r}{400}$ $\therefore 0.06 \times 400 = 3r$ $\therefore 24 = 3r$ $\therefore r = \frac{24}{3} = 8$

Hence, the rate of interest is 8% p.a.

 Given : Face Value (FV) of the bill = ₹ 4,015, r = 8%. Date of drawing = 19th Jan. 2006 Period of the bill = 9 months Nominal due date = 19th Sept. 2006 Legal due date = 22nd Sept. 2006 Date of discount = 28th Feb. 2006

 \therefore number of days from the date of discounting to the legal date is as follows :

Mar.	Apr.	Мау	June	July	Aug.	Sept.	Total
31	30	31	30	31	31	22	206

∴ Period n = $\frac{206}{365}$ BD = Interest on FV ₹ 4,015 for 206 days at 8%

$$\therefore BD = \frac{FV \times n \times r}{100}$$

= 4015 x $\frac{206}{365} \times \frac{8}{100}$
= $\frac{11 \times 206 \times 8}{100} = \frac{18128}{100}$
∴BD = 181.28
Hence, banker's discount is ₹ 181.28.
Cash Value of the bill :
CV = FV - BD
= 4015 - 181.28

∴ CV = 3833.72

Hence, cash value is ₹ 3,833.72.

5. Let the fixed monthly salary of the salesman = ₹ x and the rate of commission = r%. Now, the receipt on the first month's sale of ₹ 64000 is ₹ 10650.

:. 10650 = x + 64000 x
$$\frac{r}{100}$$

JK SHAH CLASSES

CLASS ROOM TEST

(1)

.

∴ 10650 = x + 640r

The receipt on the second month's sales of ₹ 72000 is ₹ 11450.

 $11450 = x + 72000 \times \frac{r}{100}$ ·. 11450 = x + 720r*.*.. (2) Subtracting (1) from (2), we get 800 = 80r $r = \frac{800}{100}$... 80 r = 10% Putting r = 10 in (1), we get $10650 = x + 640 \times 10$ 10650 - 6400 = x·. x = 4250Ŀ. Hence, the fixed monthly salary of the salesman is ₹ 4,250 and the rate of commission is 10%.

Q.6. Solve any One : (4 Marks each)

1.

Given : Cash Value (CV) = ₹ 5,496, r = 14%. Let the Face Value (FV) or SD of the bill = ₹ x. Date of bill = 28th Feb. 2007 Period of the bill = 8 months Nominal due date = 28th Oct. 2007 Legal due date = 31st Oct. 2007 Date of discount = 26th March 2007 ∴ number of days from the date of discounting the

 \therefore number of days from the date of discounting to the legal date is as follows :

	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Total		
	5	30	31	30	31	31	30	31	219		
	$\therefore \text{ Period } n = \frac{219}{365} \text{ year}$										
	Now, $BD = FV - CV$										
	=	= x – 5496	6								
	Also BD =	$= \frac{FV \times n}{100}$	<u>r</u>								
	$= x x \frac{219}{365} \times \frac{14}{100} = \frac{3066x}{36500}$										
$\therefore x - 5496 = \frac{3066x}{36500}$											
∴ 36500 (x – 5496) = 3066x											
∴ 36500x – (36500 x 5496) = 3066x											
	∴ 36500x – 3066x = 36500 x 5496										
	$\therefore x = \frac{36500 \times 5496}{33434}$										
$\therefore x = \frac{500 \times 5496}{458}$											
	∴ x = 500 x 12										

(04)

∴ x = 6000 Hence, the face value of the bill is ₹ 6,000. 2. Let the list price of 50 books be ₹ x. ∴ trade discount at 15% on ₹ x = x × $\frac{15}{100}$ = ₹ $\frac{3x}{200}$: invoice price = List price - Trade discount $= x - \frac{3x}{20} = \frac{20x - 3x}{20} = \frac{17x}{20}$ But, invoice price of 50 books is ₹ 1,530. $\therefore 1530 = \frac{17x}{20}$ ∴ 1530 x 20 = 17x $\therefore x = \frac{30600}{17}$ ∴ x = 1800 ∴ list price of 50 books is ₹ 1,800. ∴ list price of one book is $\frac{1800}{50} = ₹ 36$ 3. Let the catalogue price of a radio = $\mathbb{Z} \times \mathbb{Z}$. Discount at 25% on $\overline{\mathbf{x}} = \mathbf{x}' \frac{25}{100} = \overline{\mathbf{x}} \frac{\mathbf{x}}{4}$. selling price of the radio $\mathbf{E}\left[x-\frac{\mathbf{x}}{4}\right] = \mathbf{E}\left[\frac{3x}{4}\right]$ = If the cost price is = ₹ 100, making 20% profit the selling price is = ₹ 120. When the selling price is ₹ 120, the cost price is ₹ 100 then when the selling price is ₹ $\frac{3x}{4}$ the cost price is = $\frac{100x\frac{3x}{4}}{120} = ₹ \frac{75x}{120}$

He gains profit or ₹ 160 per radio. Now, Profit = Selling price – Cost price $\therefore 160 = \frac{3x}{4} - \frac{75x}{120}$ $\therefore 160 = \frac{90x - 75x}{120}$ $\therefore 160 x 120 = 15x$ $\therefore x = \frac{160 x 120}{15}$

∴ x = ₹ 1280

Hence, the catalogue price of the radio is ₹ 1,280.

#